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MODES OF INTERCONNECTED LATTICE TRUSSES
USING CONTINUUM MODELS, PART I

A. V. Balakrishnan

Abstract

This paper is Part I of a two part report and represents a continuing systematic
attempt to explore the use of continuum models — in contrast to the Finite Element
Models currently universally in use — to develop feedback control laws for stability
enhancement of structures, particularly large structures, for deployment in space. We shall
show that for the control objective, continuum models do offer unique advantages.

It must be admitted of course that developing continuum models for arbitrary struc-
tures is no easy task. In this paper we take advantage of the special nature of current
Large Space Structures — typified by the NASA-LaRC Evolutionary Model which will
be our main concern — which consists of interconnected orthogonal lattice trusses each
with identical bays. Using an equivalent one-dimensional Timoshenko beam model, we
develop an almost complete continuum model for the Evolutionary structure. We do this
in stages, beginning only with the main bus as flexible and then going on to make all the
appendages also flexible — except only for the antenna structure.

Based on these models we proceed to develop formulas for mode frequencies and
shapes. These are shown to be the roots of the determinant of a matrix of small
dimension compared with mode calculations using Finite Element Models, even though
the matrix involves transcendental functions. The formulas allow us to study asymptotic
properties of the modes and how they evolve as we increase the number of bodies which

are treated as flexible — as we shall see the asymptotics in fact become simpler.






MODES OF INTERCONNECTED LATTICE TRUSSES
USING CONTINUUM MODELS, PART I

A. V. Balakrishnan

Summary

Continuum models are constructed for interconnected beam-like lattice trusses
typilied by the NASA-LaRC Phase Zero Evolutionary Model. For the main bus as well
as the appendages we use equivalent one-dimensional Timoshenko beam models leaving
only the antenna structure as lumped. The dynamic equation is cast as an abstract wave
equation in a Hilbert space with a mass-inertia operator, a stiffness operator and a control
operator. One novel feature is the introduction of “linkage conditions” to take care of
interconnection of trusses. Formulas are developed for modes and mode shapes — they
take the form of roots of determinants of matrices, albeit involving transcendental

functions. One immediate use of the formulas involves the study of asymptotic modes.
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1. Introduction

This paper is Part 1 of a two part report and represents a continuing systematic
attempt [1-5] to explore the use of continuum models — in contrast to the Finite Element
Models currently universally in use — to develop feedback control laws for stability
enhancement of structures, particularly large structures, for deployment in space. We shall
show that for the control objective, continuum models do offer unique advantages.

It must be admitted of course that developing continuum models for arbitrary struc-
tures is no easy task. Attempts are beginning in this direction, nevertheless — see [6]. In
this paper we take advantage of the special nature of current Large Space Structures —
typified by the NASA-LaRC Evolutionary Model [9] which will be our main concern —
which consists of interconnected orthogonal lattice trusses each with identical bays. For
beam-like lattice trusses, an equivalent one-dimensional Timoshenko beam model has been
developed in [7]. Using this approximation, we develop an almost complete continuum
model for the Evolutionary structure. We do this in stages, beginning only with the main
bus as flexible and then going on to make all the appendages also flexible — except only
for the antenna structure.

Based on these models we proceed to develop formulas for mode frequencies and
shapes. These are shown to be the roots of the determinant of a matrix of small
dimension compared with mode calculations using Finite Element Models, even though
the matrix involves transcendental functions. The formulas allow us to study asymptotic
properties of the modes and how they evolve as we increase the number of bodies which
are treated as flexible — as we shall see the asymptotics in fact become simpler.

Our treatment is substantially different from extant approaches to modal analysis,
e.g., |81

We begin in Section 2 with a brief description of the NASA-LaRC Zero Phase
Evolutionary Model. In Section 3 we describe the one-dimensional equivalent Timoshenko

beam model of a lattice truss, following Noor et al. |7]. In Section 4 we develop continuum



models of the Evolutionary Model in three stages: First we model only the bus as
flexible; in the second case we model the bus as well as the laser tower as flexible; and
finally the bus and the tower as well as the appendages are modelled as flexible with only
the antenna as rigid. In Section 5 we develop formulas for the mode frequencies and
shapes for all the three cases. A study of the asymptotic modes and mode shapes
is presented in Section 6 drawing on the formulas in Section S. The closing section,
Section 7, contains some conclusions based on the study.

In Part 11 of this paper we shall present results of numerical computations of modes
and mode shapes based on the formulas herein; and compare them with extant calculations

based on Finite Element Models.



2. The NASA-Langley “Evolutionary Model” Structure

A schematic of the Evolutionary Model, consisting of a long truss bus and several
appendages with varying degrees of flexibility, is shown in Figure 1. The main truss bus
structure has 62 bays, each being a 10-inch cubical bay. The vertical appendage (Laser
Tower) is a truss with 11 bays. There are four horizontal bay appendages each with 10
bays (to which suspension cables are attached). There are 4 bays on the reflector tower.
The reflector has eight 0.25-inch thick (aluminum) ribs which taper in width from
2 inches to 1 inch over their 96-inch length. For more details see [9]. The relative
positions of the appendges are schematized in Figure 2: s,, ss locate the horizontal

appendages, sy denotes the tower truss; the antenna is at L; O, sy, 54 are co-located
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3. An Equivalent 1-D Timoshenko Beam Model of a Lattice Truss

Here we follow Noor et al. [7] in their technique for constructing an equivalent one-
dimensional continuum model of a Lattice Truss as an anisotropic Timoshenko beam.

The element properties of a generic truss are shown in Figure 3.

Let the truss axis be the x-axis and let the z-axis be the vertical, and the x-y plane be
the horizontal, plane. Let i, v, w denote the displacement along the axes at the bay vertices.
Let s parametrize the position along the bus axis, 0 < s < N£, where N is the number of
bays. Let u(s), v(s), w(s) denote the displacement at s for the equivalent Timoshenko
beam, and let ¢,(s), &,(s), $3(s) be rotation angles about the x, y and z axes respectively,

0 < s < N£. Then the Timoshenko variables are related to the node displacements by:

u[kl,:g,%) + u(kf.,_—lz’, %) + u[kl,g—,——g) + u(kl, %, g)
u(kl) = 3
v(k®) = v(kt,_—g, :%) ! v(kz’%’g] ¥ V(kz’g’%) * "("z'%'g)
- 4
b =b b bb
kL, —,—= kg, —, = kR, =, == kL,2,2
i) w(ke,=5,73) + w( 242) +w(ke,3,%5) + w(kt,3,3)
¢, (k) = 31‘5 [W (kﬁ, %, —2) + w[kl,g,g) + v[kl’., :%, ——g) + v[kz, %, :123]
(ke 5 - w2 - vae .5) - vae 5.8)]
0,k0) = 5 [u(k.2,2) 4 ulke.2.2) (ke . 2) - u(k2.2.2)]
it = e D) b ) ue B ) w3 B].




TABLE: Element Properties

Longitudinal | Diagonal | Cross Bracing

Battens Bars Bars in Battens
Length L b £ d )
Sectional
Area A Ab AQ Ad A5
Elastic
Modulus E E, E, Eq Es
Mass Density p Py Pe Pa Ps
Element
Mass = pAL " e’ "4 "
Element
Stiffness = EAIL | b Se Sa Ss

Figure 3



The anisotropic Timoshenko equations between nodes (discontinuities) are, introducing

now the time variable ¢, so that

u(s, t)
v(s, 1)
w(s, 1)
f(s! t) = ’
¢l(S, ’)
¢2(S, t)
¢3(5» t)
Mo%‘{ —Azg—z{ +A]g‘§ +Aof(l,S) =0, §; <5< S (31)

where s; represent nodes, with the convention:

51 =0:
5
§3 = Sr
54 :
S5 ©

S6=L3

Ay = Di

mp,

S O O O O

sensor/actuator
appendage
tower/sensor/actuator
sensor/actuator
appendage

antenna/sensor/actuator

ag. [0, 0, 0, 0, cs5, caa ]

0O 0 0 O
ms 0 0 O
0 my3 0 0
0 0 mye O
0o 0 O
0

0 0 msg Mege

o O O

0

mss Msg




where
11 Cia 15
Ci = | cia Caa Cas

C)s €45 Css

0 —15s Cia
Cy = | 0 —c45 cas

0 —css cas

Ce6 €36 C26

Cy = |c36 €33 €13

€6 €23 €22

The mass coefficients m;; in the Timoshenko equation are given in terms of the bay

parameters by:

4m, + 4m, + 4m, + myg
my, = my; = M3 = 1

2(8m, + 12my, + 8m, + mg)
myy = 2mss = 2mge = b l6u2 4

Lmg
Mse = ~12p2

The stiffness (flexibility) ¢;; are given by:

415, S,1°
1y = 4£S£ + Sd + Sb(l’. + uz)
ST U4 £ B 285454
“ T o 33 BT 5+ S+ )
235, 235,54

I TR TS N O )

- 25,5,
€23 = 48, + Sp(L + 1)

' 225,54
o6 = 2026 = ~2636 = LIS+ 5,(L + K2))




where

-10-

=
i
Sleo

Evolutionary Model Parameters

For the evolutionary model, the coefficients specialize to:

my

myy

mss

(37

€22

C44

Css

myy; = my3 = 1.076 x 107> sluglet/inch
4831 x 107 sluglet-inch

mes = 24.15 x 107> sluglet-inch
62.45 x 10° 1b

c33 = 7.06 x 10° b

353.14 x 10° 1b-inch?

ces = 1540.46 x 10° Ib-inch? .



-11-

4. Continuum Models of the Evolutionary Structure

We develop now (flexible) continuum models of the evolutionary structures at levels
of increasing complexity:

i) Bus only as flexible

ii) Bus and tower as flexible

iii) All (bus, tower and appendages) as flexible, only reflector lumped.

In all cases we shall obtain the generic model dynamics as an abstract wave equation
in a Hilbert space:

Mi(t) + Ax(f) + Bu(®) = 0

where

x(-) € Hilbert Space .

M is the mass-inertia operator: M is a self-adjoint and positive definite

linear bounded operator on ¥ onto H with bounded inverse

A s the stiffness operator: closed-linear operator with domain dense in H:

self-adjoint and nonnegative definite with compact resolvent
B is the control operator: B maps finite-dimensional Euclidean space into ¥
u(-) denotes the control (input) .

See [1] for the first development of such a model. Among the advantages of this generic
formulation is the close similarity of FEM and truncated modal models — excepting only

for dimension not necessarily finite! We begin with the first case:

Case 1: Bus Only as Flexible

In this model the tower, the appendages and the reflector are modelled as offset
lumped masses, as are the controllers, and the bus represented by the equivalent 1-D

anisotropic Timoshenko model. Let s; denote the location of the lumped masses. It is
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convenient at this point to invoke the abstract or function space representation as in

[1]. Our function space denoted X is taken as:
X = L0, L] x R®*®

u(s)
v(s)
w(s)
f(s) = , O<s<L
¢, (s)
¢, (s)

¢3(5)

£(0)
f(s2)
f(st)
f(54)
f(ss)
AL

and the norm in H is given by:

L
W2 = [ UAIR ds + IR 4.1
0

We now define the operator A:

3l -
b

g
c

(4.2)

where

8(s) = -Ayf(s) + AL f(s) + Ao f(5), 5;<s5<8,1, i=1..,5.
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-L, £(0) - A2 f(0)
Ay f'(s2) = f(524))

c = Abf = (4'3)

Ay(f(s;-) = F5;4)

Ly f(L) + A f(L)

where
0 -G
0 0

Ly, =

The domain of A consists of functions which are continuous and piecewise smooth: in
fact are in HX(s;, ;) i = 1, 0 5, and the first derivative is possibly discontinuous
at s = s;. A is then a closed linear operator with domain dense in # and is self-adjoint

and nonnegative definite. Moreover for x in D(A)

L
I ’ (s)1]
Ax, 2 st L1701 O] 4 “
) | 1f(5) f(s)
Ly u’(s) u’(s) L ' NOILTNG)
= J Crv(s) - 43|, [V(s) = $3(5) ds + J Cs|0;) ], |9:05)] |ds (45)
o0 L 1wy + ¢ Iwi(s) + 609 0 O1()F 195(5)
where
c; O 0 -G
0 ¢ 0 0
H =
0 0 4
i 0 °
and the potential energy of the beam
_ JAx, x
B 2

It is of course assumed that C, and Cj are positive definite and nonsingular, and hence

A is nonnegative definite.
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We have thus obtained our “stiffness” operator. Next we need to define the mass/

moment operator M.

M, f
M, b

)y -
b

We proceed now to define M,. M, is “diagonal”:

M, by
Mbb - .
M”sb6
where
b
b = E N bi € R6
b

and M,  are nonsingular, symmetric and positive definite.
14

(4.6)

(4.7

Finally we define the control operator B. Figure 4 is a schematic of the Evolutionary

structure showing the disposition of the force actuators and the corresponding axes along

which they act. There are 8 actuators. Hence let U denote the 8x1 column vector:

u
L]
U =
ug
Then
0
Bu = x; x =
By,U
where
by
b,
B, U = = b
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Accelerometers (Sensors 1 - 8)

Thrusters (Actuators 1°- 8)

1

Actuator and Sensor Locations

Figure 4
Schematic of Evolutionary Structure
Showing Disposition of Actuators/Sensors
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0 Uy
u Uy
uz 0
by = by = 0 by =
0 i3
Rox | uy Ry x| uy
uy 0
0 uy
us g
Ug 0
by = bs = 0 bg =
0 Uz
Rox | us Ry x| ug
Ug 0

where, with r denoting the position vector, r(s) denoting position vector along bus axis:

Ro r(controller) — r(0)

Ry

r(controller on tower) — r(sy)
R, = r(controller at s = 54) — r(s4)
R, = r(controllerat s=L) — r(L).

We note that the numerical values are:

Ry = 0
0
100
RI bd 0
0
RL = 0
40
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Hence
v(0)

w(0)
u(sy) + 1009, (s7)
v(sy) ~ 1009, (sr)
v(s4)
w(s4)
u(L) + 40¢,(L)
v(L) - 406, (L)

B*x = Bjb =

Case 2: Bus and Tower as Flexible

For this case and the next it is convenient to change notation slightly. We use

f(x, y, z) in place of f(s), so that
fis) = f(s,0,0)
denotes the displacement vector along the axis of the bus and
fr(s) = f(s7,0,9), O<s<Ly
e tower truss in the equivalent

will denote the displacement vector along the axis of th

1-D Timoshenko model, with Ly denoting the length of the tower. Since the tower truss

axis is now the z-axis, we redefine the tower truss coefficient matrices using a subscript:

Cl,T 0
Ay =
0 C3'T
0 Cr
AT = < '
2,T 0

AO,T = Dlag[O, 0, o, C44 » €55 » 0]
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my3 0 0 O O O

0 my 0 0 O O
Mgr = |0 0 moO0 0 0

0 0 0 mg msg O

0 0 0 mss mss O

0 0 0 0 0 myy,
Ly - g gz,r

Cs5 C45 Cys
Cyr = |cas cas c1a

€15 Ci4 Cqy

C45 —Css5
Cz,r = C44 —C45

€14 €15

€22 (23 Ca6

Cyr = |23 3 c36

C26 €36 Ce66

In the abstract version, the Hilbert Space M now is given by

H = L0, L1 x L,[0,L;)° x R*S

f(s,0,0), O<s<L

f(s7,0,5), O<s<ly
b

~
[

where

(0, 0, 0)
f(52,0,0)
JGs7,0, Ly)
f(54,0,0)
f(ss, 0, 0)
(L, 0,0)
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L Lt
W = [ 1fs, 0,00 ds + [ Iftsy, 0, 5) ds + IBIF -

0 0

The domain of A consists of functions

f(s,0,0), O<s<L
f(s7.,0,5), O<s<Ly

where

f(s,0,0) and f(5,0,0)
are absolutely continuous and f'(s, 0, 0) has an L,-derivative in the sub-intervals

Dc<s<s, 57 <5< 54, 5S4 <85 <55, ss<s<L;
and

f(sTv 0- S) and f'(sT’ 0’ S)

are absolutely continuous with f'(sy, 0, s) having an Ly-derivative in 0 < 5 < Ly.

Moreover the following “linkage conditions™ are satisfied:
) £, 0, 0)sus, = fs7.0,9)su0
ll) Ll ,Tf(sT’O’O) - AZ.Tfl(sT’O’O) + Az(_f;(sr—,0,0) - fx(ST"',0,0) = 0 .

The stiffness operator A is now defined by

f(-,0,0)
X = f(sTv 0, )
b

g 0, 0)
Ax = 8(51’ 0’)

Apf
where

g(s, 0’ 0) = "AZ fxx(sv 0» 0) + Al fx(sr 0, 0) + AO f(s’ 0, 0)

O<s5<5, S2<S<S4 S4<S<S55 S5<5<56,

g(S"‘, 0, S) - —Az"" fzz(ST, 0, S) + A] T f!(sT’ 0, S) + AO,T f(ST, 0, S)

O<s<lLy,
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~-L; f(0,0,0) - A;£.(0,0,0)
Ay(f(s2-, 0, 0) - £,(s52+, 0 ,0))

L, 1fGs1,0,Ly) + Ay rfi(s7, 0, Lp)
Ay(fy(54~, 0, 0) - f,(s4+, 0, 0))
Ay(f,(ss=, 0, 0) - f.(ss+, 0,0))

Lif(L,0,0) + Ayf(L,0,0)

A f =

Thus defined, it is easy to verify that A is closed, self-adjoint and nonnegative definite
and that

'[A—xi-jl = Elastic Energy of Bus + Elastic Energy of Tower Truss .

Finally the mass/moment operator M is defined by

M, f(-, 0, 0)
Mx = MO,T f(ST, 0, ')
M,b
where

and M, are positive-definite and nonsingular.
b, po 2

Finally we define B the control operator. First we define

0

BU = x; x =
ByU

col. [0, uy, uy, 0, 0, 0]
0
col.[uy, u4, 0, 0, 0, 0]
B U = col.[0, us, ug, 0, 0, 0] = b
0
Uy ]

ug
0

col. [U7, ug, 0, RLX
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v(0, 0, 0)
w0, 0, 0)
u(sy, 0, Ly)
v(sy, 0, Lt)
v(sq, 0, 0)
w(s4, 0, 0)
u(L,0,0) + 409, (L,0,0)
v(L,0,0) - 404, (L,0,0)

B*U = Bib =

Case 3: Bus, Tower and Appendages Flexible

We now generalize to the case where the main bus, the laser tower and the hori-
zontal appendages are modelled as flexible lattice trusses — or more precisely, their 1-D
Timoshenko beam equivalents. We shall be briefer in our descriptions since we will
follow the pattern already set in Case 2.

Thus let the subscript s, denote the coefficient matrices for the appendages at s = 52

and similarly the subscript ss for the appendage at s = ss. Then

Cs, O
SR .
3.5,
0 Cz's
Arse = | e 0 z ‘
S

Ags, = Diag. [0, 0, 0, ¢cs5, 0, cas]
0 -G
Lis, =g o
mjy2 0 0 0 0 0
0 miy 0 0 0
Mys, = |0 0O my0 0 O
0 0 0 mss 0 mse
0 0 0 0 may 0
0 0 0 msg 0 Mg




C4q4 Cra Cas
Cl.Sz = | Ca €11 €15

C4s C1s  Css

—C45 0 Ca4
CZ.S, - €18 0 €14

—css 0 cqs

€33 C3¢ 033

C3,S: - €3 Ce66 C26

€23 C26 €22

Ays, = Ays,
As, = As,
Aos, = Ao,
Mys, = Moy,
Lis, = Lgs,.
The appendage displacement vectors are then
f(s2, 5, 0),
f(ss,5,0),
for the evolutionary truss £; = £,. Thus let

f(52,5,0), -8, <5<,
f(57,5,0), O<s<Lp
f(s5,5,0), —£<s5<,
f(s,0,0), O<s<L

-£) <s< &

L <s<ty
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(0, 0, 0)
f(s2, -1, 0)
f(s2, +41, 0)
fGs1, 0, L)
f(s4, 0, 0)
f(ss, ~%, 0)
f(ss, +£2, 0)
fL,0,0)

-L,£(0, 0, 0) - A,£,(0,0,0)

-L, ,s,f(sz, -£,,0) - AZ,Szfy(sZ’ -£1,0)
L, s,f(s2, +41, 0) + Ay 5,fy(s2, +21,0)
Ly 1f(s+ 0, L7) + Ay 1fi(s7, 0, L)

Ax(fi(sa= 0,0) — fy(sa+, 0,0))

—Ly 5, f(ss, %2, 0) - Ay 5 1,055, —22 ,0)

L, ,S’f(ss, +£,,0) + Az,s,fy(SS» +£,, 0)
Lif(L, 0, 0) + Ayf, (L, 0,0)

Af =

Plus Linkage Conditions:

(1)

(2)

3)

£5,0,0) s, = fis7:0.9|su0

-L, 1f(s7, 0,0) - A, 7£,(51, 0, 0) + Ay f.(s7-.0,0) ~ f,s7+,0, 0))

f(s; 0, o)ls-31 = f(320 S, O)I;.O

AZ(fz(SZ—’O’O) _fx(s2+:0:0)) + A2'Sz(fy(sz’0—90) "'fy(5290+:0)) =

£5,0,0],.5, = fiss50|s0

Ag(£,(55-,0,0) = f(s5+,0,0)) + Ay 5, (f,(s5,0-,0) = (53, 0+ 0)

o



Remark
If suspension “ends” are treated as “free-free,” then remove
f(s2, -, 0)
[(s2, +£4, 0)
from b and instead take:
Ly s f(s2, -4, 0) + Ay 5, fy(s2,-21,0) = 0
Ly s, f(s2, +£1,0) + Ay 5 f,(52, +£,,0) = O
and similarly for the other suspension beam.
Finally:
<= |3}
b

H o= L&, 4]° x L0, L)% x Ly[-&, 1% x L0, L]® x R**®

Ax =y

f g

r o= b y = c
where

8(32-', 0)

g(sr, 0, ")
g =

8(35,‘,0)

g('- 0’0)

g(SZ) s, 0) = ‘Az,slf:yy(-’z, 5, O) + A],Sz.fy(SZQ 5, 0) + AO,Szf(SZt s, 0)

~£,<s<£|,

8ty 5, 0) = -A; rf;,(s7,5,0) + Ay 1£,(57,50) + Ao 1f(s7,5,0)

O<s<lL,

8(55. s, 0) —A2_szyy(55’ 5, 0) + Al.s,.fy(sSD 5, 0) + AO,S,f(SS’ s, 0)

- <s<ly,



g(so 0’ 0) - —AZf;x(sv 0’ 0) + Alfx(s, 0» 0) + AOf(s» 0: 0)

c = A,f; f subject to linkage conditions .

Then A is self-adjoint and nonnegative definite and

LA—%‘-EJ- = [Sum of Elastic Energy of Tower, Suspensions and Main Beam] .

Next, the mass/inertia operator M is defined by

My s, f(s2,*, 0)
Mo,rf(sr. 0,-)
Mx = MO_S,f(SSD ) 0)

Mof(-,0,0)

M,b

where again
M, b
Mb =
M, bs

where M, are mass/inertia matrices.
$

Finally we define the control operator B.

A
X =
b
0
BU =
By U
BUU =CO].[b], bz, b3' b4!b5’b6! b7!b8]
by = col. [0, u, u,, 0,0, 0]
by = 0 = b

b4 = CO].[U3, us , 0, 0, 0, 0]

b5 COl.[O,lls,l%,0,0,0]

by = 0 = by




Hence:

B*x = B*b =

U7

ug

uy

RLX ug

v(0, 0, 0)
w0, 0, 0)
u(sy, 0, Ly)
v(sr, 0, Ly)
v(s4, 0, 0)
w(sq, 0, 0)
u(L,0,0) + 40¢,(L,0,0)
v(L,0,0) — 40¢, (L,0,0)
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file: june9ly

5. Mode Formulas
In this section we develop formulas for modes and mode shapes to find the modes

we need to solve the eigenvalue problem:

Ax = 0*Mx. (5.1)
Letting
H
X =
b
we begin with Case 1.
Case 1: Bus Only Flexible
In this case (5.1) translates into:
H
X =
b
—As f(s) + ALS(S) + Ao f(s) = Mo f(s), 5, <S< S (5.2)
A, f = @’Mpb (5.3)

where the second equation can be expanded as:

-Lif(0) - A2f'(0) = M, of(0)
AZ(f'(si—) - f'(si+)) - Mb,if(si) ’ i= 21 ---’5 (5.33)

Lif(l) + A f(L)y = M, f(L)

For combining (5.2) and (5.3a) let

0 I
A(®) = (5.4)
A7 (Ao- ™M) ArA

(a 12x12 matrix). Let
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Ao _ P11(s) Pa(s)

(5.5)
P21(s)  Piy(s)
where, of course,
Pu(s) = Pn(s)
Py(s) = Pp(s) .
Let
Z] = .‘_zl(szb'o et Ll)
z" - (DZA?Mb"- » i= 2, rny 5
26 - -‘;l(szb'L - L]) .
Then (4.9a) yields:
. S
fsiv) l = @G -s) 1) (5.6)
f(si 1) i) -4 f(s)
with the convention that
f(s1-) = f(0-) =0
and condition (4.92a) requires that
fL)y = LAL).
But we can write
(L) - Lf(l) = D(w)f(0)
where
4 4(0)(L-s4) Is 0
D((l)) = Az(Ll —szb,L) 16 - e (0)(L-ss 1
~0?A; M, o Ie
R TCHERR Is 0 . A@)m25) Ie 0
—mzA?Mb.4 16 —(DZA;‘Mb'S 16
I CHIEPEEPY I's 0 . (@) fs I 6.7
—PAM,, s A3 (Ly - &*M,, o)
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where Ig is the 6x6 Identity matrix. Thus the mode frequencies are determined from
ID(®)lpey = 0 (5.8)
and the mode shapes from the corresponding eigenvector f(0):
D(w)f(0) = 0 ' (5.9
the corresponding f(s;) being determined from (5.6). Or, more explicitly

fs) = |ls OIC“M(:_,") T, - %1 T

f(0)
e ICO L3 ] , §<S; (5.6a)
A3 (-L; -0*M,, ) f(0)
where
lg 0
T.‘ = 4 , = 2r3’4’5’ Ai =8iv1 ~Si-
—0)2A2Mb',' 16

We have thus “reduced” a mode determination problem to finding the zeros of a transcen-

dental function

D®)pe, = 0 -

The crucial calculation is that of the matrix exponential (@617 We note that we

can “expand” D(w) as:
& 2k
D) = X D,
1
since

D@©) = 0.



Pure Modes

The evolutionary model trusses are actually isometric:
-0, i#j
m; =0, i# j

M, =- M, = Diag. (.05, 05, .05, 1.9, 0.95, 095)

0226 0 o0 ]| 0 071 0

028 0 [-071 0 0

M,-M_ -0 0 o| 0 o0 o
0 o7 o0 | 1538 0 0

07 0 0 | 0 539 0

0 0 o0 | 0 0 14%

0.18 0 0 0 13.23 0

0 018 0 |[-13.23 0 0

M, = 0 0 0.8 0 0 0
0

0

'r
0 1323 0O 1132 0
-13.23 0 0 0 1132
0 0 0 0 0 73
0.38 0 0 0 22 0

0.38 0 =22 0 -091

=M = 0 0 0.38 0 0.91 0
0 22 0 1511 0 120

-22 0 -0.91 0 1459 0
0 09 0 120 0 229

My - Diag.(1.08x107°, 1.08x107%, 1.08x10*, 48.3x1072, 24.15x1073, 24.15x10°3)
A; = Diag.(62.45%x10°%, 7.06x10%, 7.06x10°, 353.1x10%, 1540x10%, 1540%10°).

The inertia matrices Mb.' are nearly diagonal. If we retain only the diagonal terms,

we can easily see that there are “pure” modes: a pure “axial” mode in which
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11
0
f(s) = a(s) = |0
0
0
10
and pure “torsion” mode:
0
0
fis) = a(s) = |0
1
0
0

and we can calculate the corresponding mode frequencies (and shapes). Thus let

e =

OO0 O 0 O -

Then we have

D((D)e, = d(w)e;

where
s —wm, 1 l Py1(As)  Pra(ds) 1 0
= — . 2
-
cn Pyi(bs)  PaaBs) __C'i‘!’—’-
11
Pii(4)  Pn2(4) 1 0
2
—o’m, ;
Pyi(4)  Pa(A) —
Ci1
Pii(A)  Pa(Ay) 1
2
-
Pyi(A))  Paa(Ay) M

€11
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where
B = s - s i=1..,5
Pi(s) = cos As
PuGs) - SRk
Pyi(s) = A sin As
Pyy(s) = cos As
where
A= oVNmyley,
and

my,. = the 1-1 enryin M, ;

and the mode shape

Py(s-s;)  Pya(s-s) 1 0
ais) = |1 0O} - 2
l , Pyy(s-5;)  Pay(s-s) Mediii X4 1
€11

Pii(d;)  Pa(ay)

2 a(0) ,
Pu(A1)  Py(Ay) 5%%_.
1

We list below the first few modes comresponding to

dw) = 0.

5;S5S 5, -
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Pure Axial Modes (Hz)
291
82.45
116.35
187.4
218.7
2819
3703
610.9

Pure Torsion Modes

Here
fis) = a(s)es
where
0
0
ey = 0
1
0
0
D(w)eq = ds(w)eq
—w?my 4 g Pyy(85)  Pia(bs) 1
= —T——— : l . -0*m
“ Pyi(As)  P2a(ds) b,4,5
C44
P11(4)  Pia(8) 1 0
—0? .
Pyi(A)  Pn(d) Sadiiic XN
Ca4
Pii(a)  Pu(dy) 1
—w?
PZI(AI) P22(A1) - mb,4,l

€44



where

my4; = 4x4 termsin M, ;

A = w\Jm“/c“
P11(s) = cos As
Pya(s) = %E

Pyi(s) = A sin As

Pzg(s) COos }J .

The first few modes are:

Pure Torsion Modes (Hz)
1.2
4.29
6.79

30.6
41.6
67.46
94.53
127.4
163
186.9
208
232
249
292
317

Case 2: Bus and Tower Flexible
For this case (5.1) yields:
Dw)f = 0
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where
£,657. 0, 9)|,0
f=
f(O’ 0’ 0) 12x1
D Dy,
D(w) = 11 1
D;y Dn
- 2 d;(0)Ly 0
Dll = | AZ,T(LI.T - @ Mb,L) Il M 4 l
- 2 i |1 0] aws-sag
DIZ = AZ,T(Ll T~ W Mb,L) I L 4 0 0 e 2

d(w)S
.e()z

| \
A (-Ly - M, ) .

- §5-S
Dy = | AL —wmy) 1| - () (457507,

0
. A@NSS)

4
Ay Ay 1

- AT
Dy = | A, oMy, 1| (@O (557501,

l 0
[eA(m)(s,-s,)

|] . (e‘(W)(Sr—Sz)Tz)e‘(m)sz

1
2 AL, - *M
AL r 1 2(Ly b1

_1
|D(w)| = lDuDzz - DnDz)DnDzz|

where
0 1
d(w) =
AP (Ao - 0'Mo)  A2A
1 0
Ti = ’ i - 2) 3» 4a 5
—*AM, ;1




0 1
dr (@) =

4
Ay.1(Ay 7 - O°M; 1) Ay TAr

‘ A
V =
fo
D(w)f -~ 0
Mode Shapes: Tower
fs7,0,2) = {1 0]tr®)
5 { 0 | 1 0 e.‘(m)A,Tz TCILY f(0,0,0) }
£:(57.0,0) 00 A3 (L1 -@?M, ;) £(0,0,0)
0sz<Ly.
Case 3: Bus, Tower and Appendages Flexible
For this case (5.1) reduces to:
Dw)f = 0

where

fy-(52, 0, 0)

_fy‘(sZt 09 0)

.fz(sT9 O, 0)

f=
fy-(s5,0,0)
.f,q»(sSl 0$ o)
f(o’ 0- 0) 36x1

D) = {D;}  ij=1,..6
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. 0
d(w), (-2,)
Dy = -Ll,s,“nzMSz.—l. ’Az-sz|e e II
e A d(@) L, 0
Dy; = Ll,s,‘ Msz-h 2,5, |¢ Il
0
d(0). L
D33 - Ll,T-“onSz.Lr AZ,Tle T l|
\ 4@ -t |0
Dy = |-Lys5,~0Ms o, Ay, |€ ? I
0
d{w), t
DSS = LI,S,—‘DIMSSJ‘ Az's’le Sy l|'|
10 1
d(0)s (-1,) 4(w)a,
= |-L; g -0 -A |e 52 : l €
Dys I 1,5, 2,5, 0 0 —A-;(Lg +m2Mb.0)
10 !
d(w), 2, 4d(w)A,
Dy = |L -l A |e 52 | €
26 1.8 2.5, 0 0 —A?(Ll“ﬁsz.O)
36 = 1,7 2,T 00 —A-z{(Lr*'szb,O)

A(w)A, T el(m)(Aj*Az"'Al)
D46 = I(_Ll,35—w2Mssr‘lz) —A2-SS| € 4

e‘(m)ss("ll) . | I 0
00

1

-A;l (L1 + M, o)

1 0
00

Ay+By+A
e‘“"’)A‘ T ed(o»)( 3+A3+4,)

d(w), 2,
2 552 .
Dse = (L) 5,~ @ Ms, t,) A2’55|e ’ l

I

A7 (Ly+ M, )



I 0
-A3Ly ;1

d(0)(As+4,)

l)66 - Ll_(onb’L Az e‘(m)(Ag'l-A‘) T‘ e‘(@)A, . ¢

I/
. ' .

0
DGS - ILl-o)sz.L AZ le-‘(ﬂ))ﬂ, 4
—AzAz.s’
D Li— @2 d(w)Ag 0
64 = 1—0) Mb,L Az e 3
AzAz.s’

A7A
2T
1
Ds; = |L1—m2M,,.,_ Azle“"’""*“’ T, (@4 0 | da,
-1
I/
4
—A2A2,s2
I/ 0
-1
-ApL g 1
I
|
AZAZ.S:

ID(@)| = | Dyy - Dayp - -+ Dss - (Dgg — DGID;IIDM - - DssDE;Dss)
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6. Asymptotic Modes
In this section we use our mode formulas of Section 5 to study the asymptotic

behavior of modes for all the three cases.

Case 1: Bus Only Flexible
For the asymptotic study we use the expansion

6

D((D) - Z(I)Zka .

1

For large @ therefore the roots of
ID(w)| = 0

are those of

IDg| = O

with increasing accuracy. Now

Do = A3'M, 1 Pia(Bs) A3'My 5 Pra(Ae) - Prad) A2 My s

where
d(w)s 1
Plz(s)sll Ole .
0
Hence
IDg| = O
if and only if
IP1a(A) = 0, forsome i=1,2,3,4,5.

But these roots are recognized as the modes of a “clamped-clamped” beam. Thus
asymptotically all the “clamped-clamped” modes correspond to every beam segment between

nodes. In fact for large ®,

6 sin A, (W)A
Pu@) = X 3g)

where ¢, are the unit vectors, k=1,..,6,



L) = oy
AEIMOCI: - N -

The eigenvalues of P;;(A;) are given by

sin vy, WA,
———— k=1,.,6
Vi
or, the modes are given by
VY, 0A; = nx

nn 1 ,

0= = =, =1.,5, k=1,.,6.
Ay

For the evolutionary model

or
V = _Z—ETW Hz .
For A4 the largest segment, this yields for the axial mode:
v = (165.4)n Hz
and for the torsion mode
v = (58.7)n (Aq)
= (77.1)n (A3) .

It is difficult to recognize these in the few modes we have calculated.

Case 2: Bus and Tower Flexible

Here |D(w)] = O for large ® yields

ID11(w)] ID2(®) = 0.

Now

D) = 0
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means the roots of

11 0Tt I| -0
0
which are recognized as the “clamped-clamped” modes of the tower truss — as we
should expect.
iDa(w) = 0O

yields

Py2(As) AEI M, s P12(Ag) AEl M,,| =0

_ -1 -1
(P11(Bs)-P12(AA7 ' Ly 1)P12(B82)A2' My 2 Pr1a(81) + P1a(83)P2a(B2)As My 3 Pra(81)

=0
The first relation is equivalent to:
IPy2(As)] = 0 =~ clamped-clamped modes of segment As
IP12(A)] = 0 ~ clamped-clamped modes of segment A4 .
The second relation yields

IP12(A) 0 ~ clamped-clamped modes of segment A;
and

(P1a(Bs)-P1a(83)A3' Ly 1)P1a(8g) + Pra(8s)Pa(82)| = O
Since asymptotically

6
Py1(A) = X cos A (w)Ae,
1

Pay(4) = {;,cos A (w)Aey .
Now
A'Lyrey =0, k=1236
(corresponding to “displacement” modes about the tower axis) and the torsion mode and

hence for k=1,2,3,6
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(P11(A3) - Pra(A3)A3'L, TIP12(82)e, + Pra(83)Pya(Br)e;

sin lk(o))Az] sin A, (®)A;

- [[ws M@ 7 @) A (@)

cos l,,((o)Az] &

sin A, (0)(A3+43)
xk(m) ek .

Hence we see asymptotically the clamped-clamped displacement modes of the segment
(A3 + Az). Hence we have the clamped-clamped displacement modes of segments:

As

Ay

4,

Az + A3

but these are now recognized as the segments between lumped masses. We note that for
the evolutionary truss

A2+A3=205<A4.

Hence these modes are still too high.

Case 3: Bus, Tower and Appendges Flexible

Here
D(w)| = 0
asymptotically
D1 (@) IDy2(0)| ID33(w)] 1D4q(w)] IDss()] [Des(@)l = O

IDi(w)] = 0

= clamped-clamped modes of each appendage (length £;) at s,
IDy(w)] = 0 ,
IDy3(w)] = 0 ~ clamped-clamped modes of tower truss
Dia(w) = 0

= clamped-clamped modes of each appendage at ss
IDss(w)] = 0

[}
(=

IDge()| = bus modes
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. (M, Pra(Aa+As) A3' M,q )

© ((P1a(Bs) - Pia(An)As ' Ly 1)P1a(Ba +41) + Pra(83)Ppa(Ba+81) = O
= |P12(Aq + As)] = O clamped-clamped modes of segment (Aq + As) .

As in Case 2, for ¢, = 1,2, 3, the displacement modes, we have

AL rep = O
and hence we obtain

sin A, (@)(A; + A2 + A3) = 0.
Or, we have the clamped-clamped modes of the segment (A; + 4; + A3). But
Ay + A5

A+ A+ M
are now the segments between lumped masses. Moreover for the evolutionary truss:

Ay + As = 295

Ay + Ay + Ay = 330.

The clamped-clamped mode frequencies corresponding to the segment A; + Az + A; are
given by
vV = gg—oxlc“/m., Hz ~ (Axial) = (20.5)n Hz

and corresponding to the segment A4 + As:

V = 5%,0%,,/,7:,, - (22.9)n Hz

which are now low enough to be found in the range of modes of practical interest!



7. Conclusions

It is feasible to construct continuum models of flexible multibodies if they take the
form of large interconnected trusses with many bays where advantage can be taken of
1-D equivalent Timoshenko beam models. Using these models it is possible to construct
formulas for modes where the matrix size is insignificant compared to the Finite Element
version. However transcendental functions are involved. It is possible to make explicit
use of the mode formulas to estimate asymptotic modes. Asymptotic modes would appear
to be more realistic as the number of flexible parts which are modelled as continua
increases. The asymptotic modes then are recognized as the clamped-clamped modes of

beam segments between lumped masses.
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